Journal of Organometallic Chemistry, 179 (1979) C55–C60 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

(Received August 17th, 1979)

Electrochemical Studies on Monomeric Ruthenium Complexes.

R. Contreras, G.A. Heath*, A.J. Lindsay and T.A. Stephenson*.

Department of Chemistry, University of Edinburgh, Edinburgh

EH9 3JJ (G.B.)

Summary

Voltammetric studies on monomeric Ru(II) and Ru(III) complexes establish <u>inter alia</u> reversible one-electron reduction and irreversible oxidation of $[RuCl_3L_3]$ in contrast to $[RuCl_4L_2]^-$, and reversible one-electron oxidation of $[RuCl_2(CO)_xL_{4-x}]$ (x = 1,2) for L = a variety of neutral ligands.

Recently we reported electrochemical studies which establish a variety of facile reversible one-electron redox steps in triply chloro-bridged binuclear ruthenium complexes $[\operatorname{Ru}_2\operatorname{Cl}_x\operatorname{L}_{9-x}]$ (x = 4,5,6), where L represents a variety of soft ligands [1,2]. To place these observations in context we have now extended our investigations to a range of <u>monomeric</u> ruthenium complexes containing similar ligands. The new data, obtained by cyclic voltammetry (CV) and alternating current voltammetry (acV) [1] at a Pt electrode in CH₂Cl₂ solution, are summarised in the Table.

Syntheses of a wide range of neutral Ru(III) monomers [RuCl₃L₂L'] and [RuCl₃LL'₂] where $L = AsPh_3$ or PPh₃ and $L' = RCN, C_{5}H_{5}N$ and other Lewis bases have been reported previously [3,4]. Further examples including those with $L = As(p-tolyl)_{2}$ and L' = pyrazine, 1,4-dithian and4,4'-bipyridyl [5], together with the well-known [RuCl₃L₃] $(L = PMe_2Ph [6] \text{ and } Me_2S [7])$ were prepared in this study. All these compounds show a characteristic reversible oneelectron reduction which provides a simple and general synthetic route to the hitherto rather inaccessible Ru(II) In most instances the neutral Ru(III) complexes mono anions. also undergo an irreversible one-electron oxidation; however dual appear to confer at least transient pyridine-based ligands stability on the novel Ru(IV) cations. Such behaviour is described herein as partly reversible.⁺ In contrast, the anions $[RuCl_{A}L_{2}]$ (L = PPh₃, AsPh₃ [8], and Astol₃ [5]) show only irreversible reduction, probably associated with loss of Cl. Partly reversible oxidation to short-lived Ru(IV). species $[RuCl_{4}L_{2}]$ is observed for the arsine complexes only, confirming the ability of tertiary arsines to stabilise higher oxidation states of ruthenium, a trend already discerned in the binuclear complexes [2].

A fimilar survey of Ru(II) carbonyl-containing monomers $[RuCl_2(CO)_xL'_{4-x}]$ (see Table) suggests that as a class they tend to have a difficult but reversible (or partly reversible) one-electron oxidation, which is substantially easier in the presence of ligands such as 2,2'-bipyridyl but inaccessible

C56

[†]i.e. in CV i_p (return)/i_p (forward) increases towards unity with increasing scan-rate, consistent with slow reaction of the electrode product following reversible charge-transfer; 'quasi-reversibility' refers strictly to sluggish charge transfer.

TABLE

ELECTRODE POTENTIALS FOR MONOMERIC RUTHENIUM COMPLEXES $E_{\frac{1}{2}}$ (volts) at 20^OC in CH₂Cl₂/0.5<u>M</u> Bu₄N BF₄

Complex		11/111 .	111/IV	E _{Ox} -E _{red}
[RuC14 (PPh3)2]		-0.55 i	+1.05 1	1.60.
$\left[\operatorname{RuCl}_{4} \left(\operatorname{AsPh}_{3} \right)_{2} \right]^{-}$		-0.54 i	+1.10 pr	1.64
$[RuCl_4(Astol_3)_2]^{-1}$		-0.63 i	+1.02 pr	1.65
				•
$[RuCl_3(AsPh_3)(pyr)_2]$		0.00 r	+1.56 i	1.56
$[RuCl_3(AsPh_3)(4-Me-pyr)_2]$		-0.02 r	+1.56 pr	1.58
E "	(4,4'-bipy) ₂]	+0.08 r	+1.61 pr	1.53
í "	(O-phen)]	+0.06 r	+1.58 pr	1.52
"]	(2,2'-bipy)]	+0.05 r	+1.56 pr	1.51
["	(pyz) ₂]]	+0.27 r	+1.70 i	1.43
["	(1,4-dtn)]	+0.22 r	+1.58 i	1.37
[RuCl ₃ (Astol ₃) (1,4-dtn)]		+0.16 pr	+1.55 i	1.39
$[RuCl_3(AsPh_3)_2(CH_3CN)]$		+0.12 r	+1.58 i	1.46
["	(PhCH ₂ CN)]	+0.15 r	+1.61 i	1.46
("	(PhCN)]	+0.17 r	+1.59 i	1.42
["	(pyr)]	+0.00 r	+1.55 i	1.46
[RuCl ₃ (SMe ₂) ₃]		+0.12 r	+1.65 i	1.53
[RuCl ₃ (PMe ₂ Ph) ₃]		+0.14 r	-	
[RuCl ₃ (CO) (PPh ₃) ₂]		+0.93 r	-	
[RuCl ₂ (CO) ₂ (PPh ₃) ₂]		-		
[RuCl ₂ (CO) ₂ (AsPh ₃) ₂]		· _		
[RuCl ₂ (CO) (PMe ₂ Ph) ₃]		+1.18 r		
$[RuCl_2(CO)_2(quin)_2]$		+1.45 pr		
$[RuCl_{2}(CO)_{2}(PhNH_{2})_{2}]$		+1.08 pr		
[RuC1 ₂ (CO) ₂ (O-phen)]		+0.72 r		
[RuCl ₂ (CO) ₂ (2,2'-bipy)]		+0.73 r		

a vs Ag/AgI reference electrode, at which ferrocene is oxidized at +0.60V.

^b r = reversible, i = irreversible, pr = partly reversible

d abbreviations: bipy = bipyridyl, dtn = dithian, pyr = pyridine, pyz = pyrazine, phen = phenanthroline, quin = quinoline. for L' = PPh_3 or $AsPh_3$. The reversible oxidation of $[RuCl_2(CO) (PMe_2Ph)_3]$ at +1.18 V illustrates both the importance of phosphine basicity and the effect of replacing Cl⁻ by CO. The general correlation between the number of chloride ligands and the nature of the II/III and III/IV redox couples is apparent from the Table. Clearly, binuclear ruthenium (II) and (III) complexes are more prone to ready reversible electron transfers than the related monomers [1,2], presumably because of greater opportunity for charge delocalisation.

For $[\operatorname{RuCl}_{3}(\operatorname{AsPh}_{3})_{2}(\operatorname{MeOH})]$ however, within five minutes of the addition of the crystalline compound to the cell the expected single reversible reduction at -0.02 V gives way to new waves at +0.62V and -0.42V, which both approach half the initial height of the original wave and prove to be reversible one-electron reduction steps. (Figure). Thus although the visible spectrum is virtually invariant the electrochemical study establishes unequivocally that a rapid transformation of the methanolate complex occurs in $\operatorname{CH}_2\operatorname{Cl}_2$. Manoharan <u>et al</u> proposed a trigonal bipyramidal structure (D_{3h}) for desolvated [$\operatorname{RuCl}_3(\operatorname{AsPh}_3)_2$]

Figure 1. Time-dependent a.c. voltammograms of $\text{RuCl}_3(\text{AsPh}_3)_2$. MeOH dissolved in CH_2Cl_2 , after 30 seconds (----) and 3 minutes (----), <u>vs</u> Ag/AgI.

C58

in CH₂Cl₂ based on the contrasting esr spectra of the methanolate in solid and solution phases [9]. However the electrochemical data strongly suggest that only a dinuclear Ru₂(III,III) species such as I could exhibit stepwise reversible reductions as observed.

Ι

The proposed formation of $[Ru_2Cl_6(AsPh_3)_4]$ from $[RuCl_3 - (AsPh_3)_2(MeOH)]$ is akin to the associative behaviour already established for various Ru(II) solvates in non-coordinating media [10]. We find that $[RuCl_3(Astol_3)_2(MeOH)]$ behaves in an identical fashion, in joint contrast to the analogous but less labile complexes listed in the Table.

<u>Acknowledgement</u>. We thank CONACYT, Mexico for financial support (RC), Johnson-Matthey Ltd. for loans of ruthenium trichloride and the SRC for provision of electrochemical equipment.

References

- G.A. Heath, G. Hefter, D.R. Robertson, W.J. Sime and T.A. Stephenson, J.Organometal.Chem. <u>152</u> (1978) Cl.
- T. Arthur, R. Contreras, G.A. Heath, G. Hefter, A.J. Lindsey, D.J.A. Riach and T.A. Stephenson, J.Organometal.Chem., 179(1979)C49.

- L. Ruiz-Ramirez, T.A. Stephenson and E.S. Switkes, <u>J.Chem.Soc.Dalton</u> (1973), 1770.
- 4. J.C. Muscarella and J.R. Crook, <u>J.Chem.Soc.Dalton</u> (1978), 1142.
- 5. R. Contreras, unpublished work.
- J. Chatt, G.J. Leigh, D.M.P. Mingos and R.J. Paske, J.Chem.Soc. (A) (1968), 2636.
- J. Chatt, G.J. Leigh and A.P. Storace, <u>J.Chem.Soc(A)</u>
 (1971) 1380.
- 8. T.A. Stephenson, J.Chem.Soc(A) (1970), 889.
- P.T. Manoharan, P.K. Mehrotra, M.M. Taquikhan and R.K. Andal <u>Inorg.Chem.</u>, <u>12</u> (1973), 2753.
- P.W. Armit, W.J. Sime and T.A. Stephenson, J.Chem.Soc.Dalton (1976), 2121.